Copied to
clipboard

G = C22×D17order 136 = 23·17

Direct product of C22 and D17

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D17, C17⋊C23, C34⋊C22, (C2×C34)⋊3C2, SmallGroup(136,14)

Series: Derived Chief Lower central Upper central

C1C17 — C22×D17
C1C17D17D34 — C22×D17
C17 — C22×D17
C1C22

Generators and relations for C22×D17
 G = < a,b,c,d | a2=b2=c17=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

17C2
17C2
17C2
17C2
17C22
17C22
17C22
17C22
17C22
17C22
17C23

Smallest permutation representation of C22×D17
On 68 points
Generators in S68
(1 65)(2 66)(3 67)(4 68)(5 52)(6 53)(7 54)(8 55)(9 56)(10 57)(11 58)(12 59)(13 60)(14 61)(15 62)(16 63)(17 64)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 18)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 52)(50 53)(51 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 64)(2 63)(3 62)(4 61)(5 60)(6 59)(7 58)(8 57)(9 56)(10 55)(11 54)(12 53)(13 52)(14 68)(15 67)(16 66)(17 65)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 51)(30 50)(31 49)(32 48)(33 47)(34 46)

G:=sub<Sym(68)| (1,65)(2,66)(3,67)(4,68)(5,52)(6,53)(7,54)(8,55)(9,56)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,64)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,18)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,52)(50,53)(51,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,64)(2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,56)(10,55)(11,54)(12,53)(13,52)(14,68)(15,67)(16,66)(17,65)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46)>;

G:=Group( (1,65)(2,66)(3,67)(4,68)(5,52)(6,53)(7,54)(8,55)(9,56)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,64)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,18)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,52)(50,53)(51,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,64)(2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,56)(10,55)(11,54)(12,53)(13,52)(14,68)(15,67)(16,66)(17,65)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46) );

G=PermutationGroup([[(1,65),(2,66),(3,67),(4,68),(5,52),(6,53),(7,54),(8,55),(9,56),(10,57),(11,58),(12,59),(13,60),(14,61),(15,62),(16,63),(17,64),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,18),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,52),(50,53),(51,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,64),(2,63),(3,62),(4,61),(5,60),(6,59),(7,58),(8,57),(9,56),(10,55),(11,54),(12,53),(13,52),(14,68),(15,67),(16,66),(17,65),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,51),(30,50),(31,49),(32,48),(33,47),(34,46)]])

C22×D17 is a maximal subgroup of   D34⋊C4  D17.D4
C22×D17 is a maximal quotient of   D685C2  D42D17  D68⋊C2

40 conjugacy classes

class 1 2A2B2C2D2E2F2G17A···17H34A···34X
order1222222217···1734···34
size1111171717172···22···2

40 irreducible representations

dim11122
type+++++
imageC1C2C2D17D34
kernelC22×D17D34C2×C34C22C2
# reps161824

Matrix representation of C22×D17 in GL3(𝔽103) generated by

100
01020
00102
,
10200
01020
00102
,
100
001
010221
,
10200
00102
01020
G:=sub<GL(3,GF(103))| [1,0,0,0,102,0,0,0,102],[102,0,0,0,102,0,0,0,102],[1,0,0,0,0,102,0,1,21],[102,0,0,0,0,102,0,102,0] >;

C22×D17 in GAP, Magma, Sage, TeX

C_2^2\times D_{17}
% in TeX

G:=Group("C2^2xD17");
// GroupNames label

G:=SmallGroup(136,14);
// by ID

G=gap.SmallGroup(136,14);
# by ID

G:=PCGroup([4,-2,-2,-2,-17,2051]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^17=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C22×D17 in TeX

׿
×
𝔽